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ABSTRACT INTRODUCTION 
The objective of the study was to optimize the formulation 
parameters of cytarabine liposomes by using artificial neural 
networks (ANN) and multiple regression analysis using 33 
factorial design (FD). As model formulations, 27 formula-
tions were prepared. The formulation variables, drug (cyta-
rabine)/lipid (phosphatidyl choline [PC] and cholesterol 
[Chol]) molar ratio (X1), PC/Chol in percentage ratio of total 
lipids (X2), and the volume of hydration medium (X3) were 
selected as the independent variables; and the percentage 
drug entrapment (PDE) was selected as the dependent vari-
able. A set of causal factors was used as tutorial data for 
ANN and fed into a computer. The optimization was per-
formed by minimizing the generalized distance between the 
predicted values of each response and the optimized one that 
was obtained individually. In case of 33 factorial design, a 
second-order full-model polynomial equation and a reduced 
model were established by subjecting the transformed val-
ues of independent variables to multiple regression analysis, 
and contour plots were drawn using the equation. The opti-
mization methods developed by both ANN and FD were 
validated by preparing another 5 liposomal formulations. 
The predetermined PDE and the experimental data were 
compared with predicted data by paired t test, no statistically 
significant difference was observed. ANN showed less error 
compared with multiple regression analysis. These findings 
demonstrate that ANN provides more accurate prediction 
and is quite useful in the optimization of pharmaceutical 
formulations when compared with the multiple regression 
analysis method. 

Various formulation and process variables relating to effec-
tiveness, safety, and usefulness should be optimized simul-
taneously when developing pharmaceutical formulations. 
The difficulties in optimizing a pharmaceutical formulation 
are due to the difficulty in understanding the real relation-
ship between casual and individual pharmaceutical re-
sponses. A response surface method (RSM) has often been 
applied to optimize the formulation variables.1,2 The optimi-
zation procedure based on RSM includes statistical experi-
mental designs, multiple regression analysis, and mathe-
matical optimization algorithms for seeking the best formu-
lation under a set of constrained equations. Since theoretical 
relationships between the response variables and causal fac-
tors are not clear, multiple regression analysis can be applied 
to the prediction of response variables on the basis of a sec-
ond-order equation. The prediction of pharmaceutical re-
sponses based on second-order polynomial equation, how-
ever, is often limited to low levels, resulting in the poor es-
timation of optimal formulations.3,4 To overcome the limita-
tion of FD, artificial neural network (ANN) was incorpo-
rated.5,6 
ANN is a massively parallel-distributed processor made up 
of simple processing units that has a natural propensity for 
storing experimental knowledge and making it available for 
use.7 It resembles the brain in the way in which knowledge 
is acquired by the network from its environment through a 
learning process, and interneuron connection strengths, 
known as synaptic weights, are used to store the acquired 
knowledge. ANN could be applied to quantify a nonlinear 
relationship between causal factors and pharmaceutical re-
sponses by means of iterative training of data obtained from 
a designed experiment. 

 

KEYWORDS:  artificial neural network, contour plots, 
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The ANN has 1 input layer, 1 or more hidden layers, and 1 
output layer. Each layer has some units corresponding to 
neurons. The units in neighboring layers are fully intercon-
nected with links corresponding to synapses. The strengths 
of the connections between 2 units are called “weights.” The 
number of hidden layers or number of units in hidden layers 
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is arbitrarily defined. In each hidden layer and output layer, 
the processing unit sums its input from the previous layer 
and then applies the sigmoidal/logistic function to compute 
its output to the next layer according to the following equa-
tions8: 
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where wij is the weight from node i in the input layer to node 
j in the hidden layer; xi is the ith input element; and p is the 
number of nodes in the input layer. Generally a nonlinear 
sigmoidal/logistic function is used to regulate the output of a 
node, shown as follows:  

1/(1)(SF =  (2)

where F(S) is the output of the jth node in the hidden layer; 
and λ is the parameter relating to the shape of the sigmoidal 
function. Subsequently, output from the hidden layer is used 
as input to the output node. Finally, the overall response 
from the network is obtained via the output node in the out-
put layer.9 The sum of error squares [Σ(n)] for the nth itera-
tion is defined as  

2/1)(n∑ ∑=  (3)

where e2(n) is the error signal at the output neuron and is the 
difference between desired response and computed re-
sponse. Based on Σ(n) the weights are updated in such a 
way that the error signal is minimized to the required 
threshold. 
Cytarabine is one of the most effective anticancer agents 
used for various types of tumors.10-12 The narrow therapeutic 
index, high volume of distribution, and poor tissue specific-
ity require cytarabine to be delivered as liposomes. Drugs 
that are freely soluble in water, such as cytarabine, pose a 
great challenge to entrap them into the liposomes, as they 
have very low entrapment efficiency.13,14 The entrapment 
may vary significantly from batch to batch as the number of 
formulation variables increases. Factorial design15 and 
ANN16-18 are useful models for studying the effect of several 
factors influencing the responses by varying them simulta-
neously and carrying out a limited number of experiments. 
The present investigation aims to optimize the formulation 
variables of liposomes containing cytarabine prepared by 
the lipid film hydration method. Cytarabine is a highly wa-
ter-soluble drug, and it is very difficult to achieve high en-
trapment efficiency for water-soluble drugs. Hence, percent-
age drug entrapment (PDE) is taken as the response parame-

ters for the study. The process variables such as drying time, 
rotation speed, temperature, vacuum applied, and hydration 
time are kept constant, while the formulation variables, 
drug/lipid (phosphatidyl choline [PC] and cholesterol 
[Chol]) molar ratio (X1), PC/Chol in percentage ratio of total 
lipids (X2), and the volume of hydration medium (X3), which 
have been predicted to play a significant role in enhancing 
the PDE are taken as variable parameters. The ratio of drug 
to lipid is very important for the prediction of PDE because 
the lower ratio may lead to incomplete entrapment of cyta-
rabine and the higher ratio may lead to the presence of an 
excess of phospholipids (increase the cost of the formula-
tion). The PC/Chol ratio is also very important because the 
presence of cholesterol provides rigidity to the liposomal 
bilayer, which will be useful to retain the drug within the 
liposomes. The third independent factor, volume of hydra-
tion medium, is also a very important factor as the drug is 
introduced into the liposomes after dissolving in the hydra-
tion medium. ANN and 33 factorial design are used to study 
the effects of the formulation variables on the PDE. 
 

MATERIALS AND METHODS 
Chemicals 
Cytarabine was a gift from Dabur Research Foundation, 
Ghaziabad, India; egg PC was purchased from Sigma, St 
Louis, MO; Chol was purchased from S.D. Fine Chemicals, 
Mumbai, India; and DL-α-tocopherol was purchased from 
E. Merck India Ltd, Mumbai, India. All other chemicals and 
solvents were of analytical reagent grade. 
 

Preparation of Liposomes 
In the present study, drug/lipid (PC and Chol) in molar ratio, 
PC/Chol in percentage of total lipids, and the volume of hy-
dration medium were selected as independent variables, 
whereas PDE within the liposomes was selected as depend-
ent variable. The values of these selected variables along 
with their transformed values are shown in Table 1. 
Twenty-seven batches of cytarabine liposomes were pre-
pared by lipid film hydration method19 according to the ex-
perimental conditions as shown in Table 2. PC, Chol, and α-
tocopherol (0.5 mL of 0.1% wt/vol solution in chloroform) 
were dissolved in 5 mL of chloroform and methanol (2:1 by 
volume ratio) in a 250-mL round-bottom flask. The flask 
was rotated in the rotary flash evaporator at 100 rpm for 20 
minutes in a thermostatically controlled water bath at 37°C 
under vacuum (600 mm of mercury). Drug solution (5 mg 
of drug dissolved in distilled water [hydration medium]) was 
added to the thin, dry, lipid film formed, and the flask was 
rotated again at the same speed and temperature as before  
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Table 1. Coded Values of the Formulation Parameters of Cytarabine Liposomes* 
Actual Values Coded Values 

X1 X2 X3 

–1 1:7 50:50 1 mL 
0 1:10 60:40 2 mL 
1 1:13 70:30 3 mL 

*X1 represents the drug:lipid (molar ratio); X2, the PC:Chol (in percentage of total lipids); and X3, the hy-
dration volume (distilled water). 

 
Table 2. 33 Full Factorial Design Layout* 

Batch No. X1 X2 X3 X1
2 X2

2 X3
2 X1X2 X2X3 X1X3 X1X2X3 

Observed PDE ± 
SEM  Predicted PDE

1 –1 –1 –1 1 1 1 1 1 1 –1 43.5 ± 1.46 45.86 
2 0 –1 –1 0 1 1 0 1 0 0 52.1 ± 2.24 53.60 
3 1 –1 –1 1 1 1 –1 1 –1 1 77.8 ± 2.14 76.84 
4 –1 0 –1 1 0 1 0 0 1 0 63.1 ± 1.50 60.28 
5 0 0 –1 0 0 1 0 0 0 0 59.6 ± 2.10 61.91 
6 1 0 –1 1 0 1 0 0 –1 0 78.6 ± 1.04 79.03 
7 –1 1 –1 1 1 1 –1 –1 1 1 70.5 ± 2.11 70.05 
8 0 1 –1 0 1 1 0 –1 0 0 64.1 ± 1.10 65.57 
9 1 1 –1 1 1 1 1 –1 –1 –1 80.4 ± 2.15 76.57 
10 –1 –1 0 1 1 0 1 0 0 0 70.4 ± 2.50 66.62 
11 0 –1 0 0 1 0 0 0 0 0 66.9 ± 1.10 64.50 
12 1 –1 0 1 1 0 –1 0 0 0 77.2 ± 2.34 77.86 
13 –1 0 0 1 0 0 0 0 0 0 70.6 ± 2.40 71.52 
14 0 0 0 0 0 0 0 0 0 0 69.2 ± 1.70 69.14 
15 1 0 0 1 0 0 0 0 0 0 83.5 ± 1.60 82.25 
16 –1 1 0 1 1 0 –1 0 0 0 71.3 ± 1.50 71.27 
17 0 1 0 0 1 0 0 0 0 0 67.8 ± 1.13 69.14 
18 1 1 0 1 1 0 1 0 0 0 77.4 ± 2.11 82.00 
19 –1 –1 1 1 1 1 1 –1 –1 1 70.1 ± 1.11 72.21 
20 0 –1 1 0 1 1 0 –1 0 0 64.2 ± 1.30 60.21 
21 1 –1 1 1 1 1 –1 –1 1 –1 59.2 ± 2.19 63.70 
22 –1 0 1 1 0 1 0 0 –1 0 64.5 ± 2.20 67.58 
23 0 0 1 0 0 1 0 0 0 0 58.7 ± 1.62 61.20 
24 1 0 1 1 0 1 0 0 1 0 75.4 ± 1.13 70.30 
25 –1 1 1 1 1 1 –1 1 –1 –1 59.7 ± 1.32 58.32 
26 0 1 1 0 1 1 0 1 0 0 60.2 ± 2.54 57.54 
27 1 1 1 1 1 1 1 1 1 1 71.3 ± 1.68 72.25 

*PDE indicates percentage drug entrapment; SEM, Standard error of mean. (n = 3). 

 
but without vacuum for 30 minutes for lipid film removal 
and dispersion. The liposomal suspension so formed was 
then transferred to a suitable glass container and sonicated 
for 30 minutes using a probe sonicator (model RR-120, Ral-
sonics, Mumbai, India) in an ice bath for heat dissipation. 
The sonicated dispersion was then allowed to stand undis-
turbed for about 2 hours at room temperature for swelling. 
Each batch was prepared 3 times and stored in refrigerator. 
 

Estimation of Entrapped Drug in Liposomes 
Cytarabine entrapped within the liposomes was estimated 
after removing the unentrapped drug. The unentrapped drug 
was separated from the liposomes by subjecting the disper-
sion to centrifugation19 in a cooling centrifuge (Remi 
Equipments, Mumbai, India) at 15 000 rpm at a temperature 
of –4°C for 30 minutes, whereupon the pellets of liposomes 
and the supernatant containing free drug were obtained. The 
liposome pellets were washed again with distilled water to 
remove any unentrapped drug by centrifugation. The com- 
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Table 3. Model Coefficients Estimated by Multiple Regression 
Analysis 

Factor Coefficient Computed t Value P Value 
Intercept 69.141 40.742 .000000* 

X1 5.366 6.769 .000005* 
X2 2.323 2.930 .009813* 
X3 –0.356 –0.453 .656601 
X1

2 7.745 5.678 .000034* 
X2

2 –2.322 –1.702 .108040 
X3

2 –7.590 –5.509 .000048* 
X1X2 –0.253 –0.252 .804281 
X2X3 –3.658 –3.806 .001553* 
X1X3 –4.008 –4.170 .000722* 

X1X2X3 5.863 4.980 .000136* 
* P value is very significant at P <.01 

 
bined supernatant was analyzed for the drug content after 
suitable dilution with methanol by measuring absorbance at 
274 nm using a Hitachi U-2000 double-beam spectropho-
tometer (Hitachi Ltd, Tokyo, Japan). The PDE in the lipo-
somes was calculated from the difference between the initial 
drug added and the drug detected in the supernatant. The 
amount of drug exactly present within the liposomes was 
also analyzed by dissolving the liposomes in methanol to 
countercheck the PDE and to arrive at a mass balance. The 
analysis of drug in liposomes was carried out using the 
empty liposomes dissolved in methanol as blank in order to 
nullify the interference of the excipients. The mean PDE of 
all 27 batches is shown in Table 2. 
 

Multiple Regression Analysis 
A prior knowledge and understanding of the process and the 
process variables under investigation are necessary for 
achieving a more realistic model. Based on the results ob-
tained in preliminary experiments, drug/lipid ratio, PC/Chol 
ratio, and hydration volume were found to be the major 
variables in determining the PDE. Hence, these variables 
were selected to find the optimized condition for higher 
PDE using 33 factorial design and contour plots. 
Twenty-seven batches of different combinations were pre-
pared by taking values of selective variables X1, X2, and X3 
at different levels as shown in Table 1. The prepared batches 
were evaluated for PDE, a dependent variable, and the re-
sults are recorded in Table 2. A multilinear stepwise regres-
sion analysis was performed using Microsoft Excel soft-
ware. Mathematical modeling was carried out by using 
Equation 4 to obtain a second-order polynomial equation.20 

Y = b0 + b1X1 + b2X2 + b3X3 + b1 
2X11 + b2 

2X22 + b3 
2X33 

+ b12X1X2 + b23X2X3 + b13X1X3 + b123X1X2X3 
(4)

where Y is the dependent variable (PDE), while b0 is the 
intercept; bi (b1,b2, and b3), bij (b12, b23, and b13), and bijk 
(b123) represent the regression coefficient for the second-
order polynomial; and Xi represents the levels of independ-
ent formulation variables. A full model (Equation 5) was 
established after putting the values of regression coefficients 
in Equation 4. The predicted values along with their ob-
served values are shown in Table 3, which gives informa-
tion about the percentage of error obtained when the pre-
dicted value was compared with the observed values, and 
the predicted values were calculated by using the mathe-
matical model derived from the coefficients of the model as 
shown in Table 4. 

 Y = 69.141 + 5.366X1 + 2.323X2 – 0.356X3  
  + 7.745X1

2 – 2.322X2
2 – 7.59X3

2 

   – 0.253X1X2  – .658X2X3 – 4.008X1X3  
  + 5.863X1X2X3 

(5)

Neglecting nonsignificant (P < .01) terms from the full 
model established a reduced model (Equation 6), which fa-
cilitates the optimization technique by plotting contour plots 
and response surface plots keeping 1 independent formula-
tion variable constant and varying the other 2 independent 
formulation variables, to establish the relationship between 
independent and dependent variables. 

 Y = 67.556 + 5.394X1 + 2.29X2 + 7.71X1
2 

   – 7.53X3
2 – 3.658X2X3 – 4.008X1X3  

  + 5.863X1X2X3 
(6)

Results of analysis of variance (ANOVA) of full model and 
reduced model were carried out and the F statistic was ap-
plied to check whether the nonsignificant terms can be omit-
ted or not from the full model, which is shown in Table 5. 
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Figure 1. Contour plots (A) at –1 level of variable X3, (B) at 0 level of variable X3, (C) at 1 level of variable X3. 

Table 4. Analysis of Variance of Full and Reduced Model* 
  DF SS† MS‡ F§ R R2 Adj R2 

Regression FM 10 1980.817 198.082 17.866 0.9580 0.9178 0.8664 
 RM 7 1944.702 277.814 24.723 0.9493 0.9011 0.8646 
Error FM 16 177.390 (E1) 11.087     
 RM 19 213.504 (E2) 11.237     
*DF indicates Degree of freedom; E1 and E2 indicated Sum of squares of error of full and reduced model respectively; F, Fischer 
ratio; FM, full model; MS, Mean squares; RM, reduced model; and SS, Sum of squares. Number of parameters omitted = 3. 
†SSE2 – SSE1 = 213.504 – 177.390 = 36.114  
‡MS of error (full model) = 11.087 
§F calculated = (36.114/3)/11.087 = 1.08 

 
Table 5. Validation of the Established Relationships* 

No. X1 (Drug:Lipid) X2 (PC:Chol) X3 (Hydration Volume) Y† Y-BP‡ Y-FD§ 
1 1: 12.40 67.6:32.4 1 79.2 78.90 80.00 
2 1:11.00 57.2:42.8 2 73.1 74.25 70.00 
3 1: 11.60 65.2:34.8 2 77.8 78.29 75.00 
4 1: 12.40 57.6:42.4 3 74.6 74.72 75.00 
5 1: 10.66 56.0:44.0 3 59.9 59.10 60.00 

tcalculated 0.7122 0.3337 
ttabulated 2.7765 

Normalized Error 0.02197 0.05681 
†Y is the percentage drug entrapment (PDE), obtained from experiments. 
‡Y-BP is the PDE predicted by Back Propagation Network (artificial neural network). 
§Y-FD is the PDE predicted by multiple regression analysis. 

 
Contour Plots 
Two-dimensional contour plots were established using re-
duced polynomial equation (Equation 6). Values of X1 and 
X2 were computed at prefixed values of PDE. Three contour 
plots were established between X1 and X2 at fixed level if –1, 
0, and 1 level of X3 as shown in Figure 1 (A, B, and C). 
 

Artificial Neural Network 
A commercial Microsoft Windows-based ANN software, 
Matlab Version 6.1 (The MathWorks, Natick, MA) was 
used throughout the study with a P-4 personal computer. 
This software allows the user to select the number of hidden 
layers and hidden layer nodes (neurons), iterations used dur- 
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ing the model training, learning algorithm, and transfer 
functions. 
A multilayer feed-forward back-propagation network, which 
was created by generalizing the Levelberg-Marquardt’s 
learning rule to multiple layer networks and nonlinear dif-
ferential transfer functions, was used to predict PDE of the 
liposomal formulations. Our network architecture consisted 
of an input layer with 3 neurons, an output layer with 1 neu-
ron, and a hidden layer (Figure 2). The number of hidden 
nodes in a network is critical to network performance. Too 
few nodes can lead to underfitting. Too many nodes can 
lead the system toward memorizing the patterns in the 
data.21 According to Kolmogorov’s theorem, it was under-
stood that twice the number of input nodes plus one is suffi-
cient to compute any arbitrary continuous function.22 Hence, 
we started off with Kolmogorov’s number of hidden nodes 
and increased the number until a network with the least 
mean-squared error was attained. 

Figure 2. The feed forward back propagation network used 
in the study. X 1 , Drug:Lipid, X 2 , PC:Chol, X 3 , volume of 
hydration medium,Y, PDE; H 1 -H 11 , nodes of the hidden 
layer; W 11 , connection from first input node to the first 
hidden node; W 11 , connection from the hidden node to the 
output node; W 113 , connection from the third input node to 
the eleventh hidden node; W 111 , connection from the elev-
enth hidden node to the output node. 

Input vectors and the output vector (response) were used to 
train the network until it could approximate a function (ie, 
associate input vectors with specific output vectors). Trained 
back-propagation networks tend to give reasonable answers 
when presented with inputs that they have never seen. 
In the experiment, based on the 33 factorial design, 27 
batches were prepared and PDE of these batches was used 
for training. Learning rate and error goal were selected on a 
trial and error basis in such a way so as to keep the mini-
mum distance between the actual and predicted value. The 
second set was used for validation of the trained network. 
Here the paired t test was applied between experimental and 
predicted value. 
 

Normalized Error Determination 
The quantitative relationship established by both techniques 
(ANN and FD) was confirmed by preparing experimentally 
5 liposomal formulations by random selection of causal fac-
tors. PDEs predicted from the ANN and FD were compared 
with those generated from physical experiment using Nor-
malized Error (NE). The equation of NE is expressed as 
follows: 

NE = [Σ{(Pr – Er)/Er}2]1/2 (7)

where Pr and Er represent predicted and experimental re-
sponse, respectively. 
 

RESULTS AND DISCUSSION 

Multiple Regression Analysis 
By using 33 factorial design (Table 1), 27 batches of cytara-
bine liposomes were prepared by the lipid film hydration 
method varying 3 independent variables: drug:lipid (molar 
ratio) (X1); PC:Chol (in percentage of total lipids) (X2); and 
volume of hydration medium (X3). The PDE, which was 
taken as a dependent variable, was determined and the re-
sults were recorded (Table 2). A substantial high drug en-
trapment achieved in liposomes prepared by lipid film hy-
dration method was 83.5% at 1 level of X1 (1:13), 0 level of 
X2 (60:40), and 0 level of X3 (2 mL). The reasons for high 
entrapment at 0 levels of X2 and X3 may be because the in-
crease in Chol content above 40% in the bilayer led to a re-
duction in PDE, and as the drug was dissolved in the hydra-
tion medium, the increase in hydration volume beyond 2 mL 
led to a reduction in PDE. The liposome formulations were 
lyophilized using sucrose as cryoprotectant. The lyophilized 
liposome powder was coated with gold and kept in the sam-
pling unit as a thin film; then a photomicrograph was taken 
at 11 000 magnification using Jeol Scanning Electron Mi-
croscope (Jeol, JSM-840 SEM,Tokyo, Japan), which 
showed that the liposomes formed are spherical in shape 
(see Figure 3). 
The PDE (dependent variable) obtained at various levels of 
3 independent variables (X1, X2 , and X3) were subjected to 
multiple regression to yield a second-order polynomial 
equation (full model). The PDE values for the 27 batches 
showed a wide variation from 43.5% to 83.5% (Table 2). 
The values X3, X2

2, and X1X2 in Equation 5 are regarded as 
least contributing in the preparation of cytarabine liposomes 
by lipid film hydration method. Hence, these terms are ne-
glected from the full model considering nonsignificance and 
a reduced polynomial equation (Equation 6) was obtained. 
The significance of each coefficient of Equation 5 was de-
termined by Student t test and P value, which are listed in 
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Table 3. The larger the magnitude of the t value and the 
smaller the P value, the more significant is the correspond-
ing coefficient.23,24 This implies that the quadratic main ef-
fects of drug/lipid ratio and PC/Chol ratio are significant. 
The second-order main effects of both drug/lipid ratio and 
volume of hydration are significant, as is evident from their 
P values. The interaction between X2X3, X1X3, and X1X2X3 
are found to be very significant from their P values (Table 
3). 

Figure 3. SEM photograph of cytarabine liposomes using 
original magnification ×11 000. 

The results of ANOVA of the second-order polynomial 
equation are given in Table 4. F statistic of the results of 
ANOVA of full and reduced model confirmed omission of 
nonsignificant terms of Equation 5. Since the calculated F 
value (1.086) is less than the tabulated F value (3.25) (α = 
0.05, V1 = 3 and V2 = 16), it was concluded that the ne-
glected terms do not significantly contribute in the predic-
tion of PDE. When the coefficients of the 3 independent 
variables in Equation 5 were compared, the value for the 
variable X1 (b1 = 5.366) was found to be maximum; hence 
the variable X1 was considered to be a major contributing 
variable for PDE of cytarabine liposomes. The Fisher F test 
with a very low probability value demonstrates a very high 
significance for the regression model. The goodness of fit of 
the model was checked by the determination coefficient 
(R2). In this case, the values of the determination coefficients 
(R2 = 0.9178 for full model and 0.9011 for reduced model) 
indicated that over 90% of the total variations are explained 
by the model. The values of adjusted determination coeffi-
cients (adj R2 = 0.8664 for full model and 0.8646 for re-
duced model) are also very high, which indicates a high sig-
nificance of the model. The higher values of correlation co-
efficients (R = 0.958 for full model and 0.9493 for reduced 
model) signify an excellent correlation between the inde-
pendent variables.25-27 
 

Contour Plots 
Values of X1 and X2 were computed at prefixed values of 
PDE and contour plots were established. The variable X3, 
being least significant, was kept constant in drawing the 
contour plots. Three contour plots were established between 
X1 and X2 at fixed level if –1, 0, and 1 level of X3 as shown 
in Figure 1 (A, B, and C). The contour plots showed very 
clearly the relationship between the independent variables 
and the PDE. The developed contour plots were used to pre-
dict the PDE. Five checkpoints were selected from the con-
tour plots, and the predicted PDE was compared with the 
experimental PDE using paired Student t test. The results of 
the t test proved that the difference between the predicted 
and experimental PDE was not statistically significant (t 
value = 0.3337). This demonstrates the effective use of re-
duced polynomial equation and contour plots in determining 
the PDE in the preparation of cytarabine liposomes. 
 

Artificial Neural Network 
A multilayer feed-forward back-propagation network using 
Levelberg-Marquardt’s learning rule was used to predict 
PDE of the liposomal formulations. Three causal factors 
corresponding to different levels of drug:lipids (X1), 
PC:Chol (X2), and volume of hydration medium (X3) were 
used as each unit of input layer. The output layer was com-
posed of one response variable Y, PDE. A set of release 
parameters and causal factors was used as tutorial data for 
ANN and fed into a computer. Several iterations were con-
ducted with different numbers of nodes of hidden layer and 
training times in order to determine the optimal ANN struc-
ture.28 For selecting the number of hidden nodes, we started 
with 3 hidden nodes and gradually increased the number of 
nodes until a network of least mean squared error was at-
tained. Increase in the number of nodes led to decrease in 
least mean squared error. Finally, with 11 hidden nodes, we 
could achieve the least mean squared error and excellent 
prediction of the response variable. Further increase in hid-
den nodes produced high error, when the network was vali-
dated with another set of test data (Table 5). The Student t 
test carried out between the predicted results (t value = 
0.722) from the ANN and the experimental results showed 
no statistically significant difference between them. The NE 
between the predicted and experimental response variables 
was employed as an evaluation standard between ANN and 
FD. The NE value observed with the optimal ANN structure 
was 0.021 97, while it was 0.056 81 in case of second-order 
polynomial equation (FD). 
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Comparison of ANN and FD 
Both ANN and FD visualized similar results, and their pre-
dictions regarding the PDE coincided very well. To check 
the accuracy of these predictions, we prepared experimen-
tally 5 liposomal formulations by random selection of causal 
factors. Experimental results were comparable with the pre-
dicted results (Table 5). Data analyzed using paired Student 
t test revealed that there was no statistically significant dif-
ference between the experimental results and the predicted 
results of ANN and FD. A close look at both ANN and FD 
reveals the following facts. The normalized error obtained 
from ANN was less, compared with the multiple regression 
analysis, and shows the higher accuracy in prediction. ANN 
can easily handle more input variables and is extremely 
helpful when the number of experiments is greater, but in 
the case of factorial design, a large number of input vari-
ables leads to a polynomial with many coefficients, which 
involves tedious computation. Another major advantage 
with ANN is the flexibility to work with the theoretical data 
for better prediction, but FD does not accommodate theo-
retical or historical data. 
 

CONCLUSION 

The study demonstrated that 33 factorial design (FD) and 
back-propagation network (ANN) are useful tools to under-
stand the effects of the various formulation parameters in the 
preparation of cytarabine liposomes by lipid film hydration 
method and to predict the best composition for a particular 
response. The optimal formula for the high PDE (83.5%) 
was found to be drug:lipid (molar ratio), 1:13; PC:Chol (in 
percentage of total lipids), 60:40; and 2 mL of hydration 
volume. Thus, desirable goals can be achieved by a system-
atic formulation approach in the shortest possible time with 
a reduced number of experiments, thereby reducing the cost 
of development of the formulations. 
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